Мат функции. Стандартные математические функции в языке си

Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному .

Первоначально, понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем - у Лакруа (1806 год) - уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год) .

К концу XIX века понятие функции переросло рамки числовых систем. Первыми это сделали векторные функции , вскоре Фреге ввёл логические функции (), а после появления теории множеств Дедекинд () и Пеано () сформулировали современное универсальное определение.

Определения

Наиболее строгим определением функции является теоретико-множественное определение (на основе понятия бинарного отношения). Часто вместо определения функции даётся её интуитивное описание; то есть понятие функции переводится на обычный язык, используя слова «закон», «правило» или «соответствие».

Интуитивное описание

Функция (отображение , операция , оператор ) - это закон или правило , согласно которому каждому элементу из множества ставится в соответствие единственный элемент из множества .

При этом говорят, что функция задана на множестве , или что отображает в .

Если элементу сопоставлен элемент , то говорят, что элемент находится в функциональной зависимости от элемента . При этом переменная называется аргументом функции или независимой переменной , множество называется областью задания или областью определения функции, а элемент , соответствующий конкретному элементу - частным значением функции в точке . Множество всех возможных частных значений функции называется её областью значений или областью изменения .

Теоретико-множественное определение

В теоретической математике функцию удобно определить как бинарное отношение (то есть множество упорядоченных пар ), которое удовлетворяет следующему условию: для любого существует единственный элемент такой, что .

Это и позволяет говорить о том, что элементу сопоставлен один и только один элемент такой, что .

Таким образом, функция - это упорядоченная тройка (или кортеж) объектов , где

Обозначения

Если задана функция , которая определена на множестве и принимает значения в множестве , то есть, функция отображает множество в , то

Наличие функциональной зависимости между элементом и элементом

Функции нескольких аргументов

Определение функции легко обобщить на случай функции многих аргументов.

Если множество представляет собой декартово произведение множеств , тогда отображение оказывается -местным отображением, при этом элементы упорядоченного набора называются аргументами (данной -местной функции), каждый из которых пробегает своё множество:

где .

В этом случае означает, что .

Способы задания функции

Аналитический способ

Функция, как математический объект, представляет собой бинарное отношение, удовлетворяющее определенным условиям. Функцию можно задать непосредственно как множество упорядоченных пар, например: есть функция . Однако, этот способ совершенно непригоден для функций на бесконечных множествах (каковыми являются привычные вещественные функции: степенная, линейная, показательная, логарифмическая и т. п.).

Для задания функции пользуются выражением: . При этом, есть переменная, пробегающая область определения функции, а - область значений. Эта запись говорит о наличии функциональной зависимости между элементами множеств. х и y могут пробегать любые множества объектов любой природы. Это могут быть числа, векторы, матрицы, яблоки, цвета радуги. Поясним на примере:

Пусть имеется множество яблоко, самолет, груша, стул и множество человек, паровоз, квадрат . Зададим функцию f следующим образом: (яблоко, человек), (самолет, паровоз), (груша, квадрат), (стул, человек) . Если ввести переменную x, пробегающую множество и переменную y, пробегающую множество , указанную функцию можно задать аналитически, как: .

Аналогично можно задавать числовые функции. Например: , где х пробегает множество вещественных чисел, задает некоторую функцию f. Важно понимать, что само выражение не является функцией. Функция, как объект, представляет собой множество (упорядоченных пар). А данное выражение, как объект, есть равенство двух переменных. Оно задает функцию, но не является ею.

Однако, во многих разделах математики, можно обозначать через f(x) как саму функцию, так и аналитическое выражение, ее задающее. Это синтаксическое соглашение является крайне удобным и оправданным.

Графический способ

Числовые функции можно также задавать с помощью графика. Пусть - вещественная функция n переменных.

Рассмотрим некоторое (n+1)-мерное линейное пространство над полем вещественных чисел (так как функция вещественная). Выберем в этом пространстве любой базис (). Каждой точке функции сопоставим вектор: . Таким образом, мы будем иметь множество векторов линейного пространства, соответствующих точкам данной функции по указанному правилу. Точки соответствующего аффинного пространства будут образовывать некоторую поверхность.

Если в качестве линейного пространства взять евклидово пространство свободных геометрических векторов (направленных отрезков), а число аргументов функции f не превосходит 2, указанное множество точек можно изобразить наглядно в виде чертежа (графика). Если сверх того исходный базис взять ортонормированным, получим «школьное» определение графика функции.

Для функций 3 аргументов и более такое представление не применимо ввиду отсутствия у человека геометрической интуиции многомерных пространств.

Однако, и для таких функций можно придумать наглядное полугеометрическое представление (например каждому значению четвертой координаты точки сопоставить некоторый цвет на графике).

Связанные определения

Сужение и продолжение функции

Пусть дано отображение и .

Отображение , которое принимает на те же значения, что и функция , называется суже́нием (или, иначе ограничением ) функции на множество .

Сужение функции на множество обозначается как .

Если функция такова, что она является сужением для некоторой функции , то функция , в свою очередь, называется продолжением функции на множество .

Образ и прообраз (при отображении)

Элемент , который сопоставлен элементу , называется образом элемента (точки) (при отображении ).

Если взять целое подмножество области определения функции , то можно рассмотреть совокупность образов всех элементов множества , а именно подмножество области значений (функции ) вида

,

которое, называется образом множества (при отображении ). Это множество иногда обозначается как или .

Наоборот, взяв некоторое подмножество области значений функции , можно рассмотреть совокупность тех элементов области определения (функции ), чьи образы попадают в множество , а именно - множество вида

,

которое называется (полным ) прообразом множества (при отображении ).

В том частном случае, когда множество состоит из одного элемента, скажем, , множество имеет более простое обозначение .

Тождественное отображение

Отображения, у которых совпадают область определения и область значений, называются отображениями заданного множества в себя или преобразованиями .

В частности, преобразование , которое сопоставляет каждой точке множества её саму или, что тоже самое,

для каждого ,

называется тождественным .

Это отображение имеет специальное обозначение: или, проще, (если из контекста понятно, какое множество имеется в виду). Такое обозначение обязано своим происхождением англ. слову identity («идентичность, тождественность»).

Другое обозначение тождественного преобразования - . Такое отображение является унарной операцией, заданной на множестве . Поэтому, нередко, тождественное преобразование называют единичным .

Композиция отображений

Пусть и - два заданных отображения таких, что область значений первого отображения является подмножеством области определения второго отображения. Тогда для всякого однозначно определяется элемент такой, что , но для этого самого однозначно определяется элемент такой, что . То есть, для всякого однозначно определяется элемент такой, что . Другими словами, определено отображение такое, что

для всякого .

Это отображение называется композицией отображений и и обозначается

Обратное отображение

Если отображение является взаимно однозначным или биективным (см. ниже), то определено отображение , у которого

Такое отображение называется обратным по отношению к отображению .

Отображение, у которого определено обратное, называется обратимым .

В терминах композиции функции, свойство обратимости заключается в одновременном выполнении двух условий: и .

Свойства

Пусть задана функция , где и - данные множества, причём . Каждая такая функция может обладать некоторыми свойствами, описание которых приведено ниже.

Образ и прообраз при отображении

Взятие образа

Положим, и - подмножества области определения. Взятие образа (или, что то же самое, применение оператора ) обладает следующими свойствами:

Последние два свойства, вообще говоря, допускают обобщение на любое количество множеств, большее двух (как оно здесь сформулировано).

Взятие прообраза

Положим, и - подмножества множества .

По аналогии с взятием образа, взятие прообраза (переход к прообразу) обладает также следующими двумя очевидными свойствами:

Данные свойства, также, допускают обобщение на любое количество множеств, большее двух (как оно здесь сформулировано).

В случае, если отображение обратимо (см. ), прообраз каждой точки области значений одноточечный, поэтому для обратимых отображений выполняется следующее усиленное свойство для пересечений:

Поведение функций

Сюръективность

Функция называется сюръективной (или, коротко, сюръекция ), если каждому элементу множества прибытия может быть сопоставлен хотя бы один элемент области определения. Другими словами, функция сюръективна , если образ множества при отображении совпадает с множеством : .

Такое отображение называется ещё отображением на .

Если условие сюръективности нарушается, то такое отображение называют отображением в .

Инъективность

Функция называется инъективной (или, коротко, инъекция ), если разным элементам множества сопоставлены разные элементы множества . Более формально, функция инъективна , если для любых двух элементов таких, что , непременно выполняется .

Другими словами, сюръекция - это когда «у каждого образа есть прообраз», а инъекция - это когда «разные - в разные». То есть при инъекции не бывает так, чтобы два или больше разных элементов отображались в один и тот же элемент . А при сюръекции не бывает так, чтобы какой-то элемент не имел прообраза.

Биективность

Если функция является и сюръективной , и инъективной , то такую функцию называют биективной или взаимно однозначной .

Возрастание и убывание

Пусть дана функция Тогда

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Периодичность

Функция называется периодической с пери́одом , если справедливо

.

Существует великое разнообразие структур, которые могут быть заданы на множествах. Сюда относится:

  • структура порядка - частичный или линейный порядок .
  • алгебраическая структура - группоид , полугруппа , группа , кольцо , тело , область целостности или поле .
  • структура метрического пространства - здесь задаётся функция расстояния ;
  • структура евклидового пространства - здесь задаётся скалярное произведение ;
  • структура топологического пространства - здесь задаётся совокупность т. н. «открытых множеств»;
  • структура измеримого пространства - здесь задаётся сигма-алгебра подмножеств исходного множества (например, посредством задания меры с данной сигма-алгеброй в качестве области определения)

Природа множеств определяет и свойства соответствующих функций, поскольку эти свойства формулируются в терминах заданных на множествах структурах. Например, свойство непрерывности , требует задания топологической структуры .

Вариации и обобщения

Частично определённые функции

Частично определённая функция из множества в множество есть функция с областью определения .

В Excel есть функция нахождения случайных чисел =СЛЧИС(). Возможность же найти случайное число в Excel, важная составляющая планирования или анализа, т.к. вы можете спрогнозировать результаты вашей модели на большом количестве данных или просто найти одно рандомное число для проверки своей формулы или опыта.

Продолжаем серию статей о математических формулах в Excel. Сегодня разберем формулу записи «модуль в Excel». Модуль числа применяется для определения абсолютной величины числа, например длины отрезка. Ниже мы приводим несколько способов расчета модуля числа в Эксель, основная функция — ABS, а дополнительный расчет при помощи функций ЕСЛИ и КОРЕНЬ.

Мы немного затронули тему экспоненты в статье про округление больших чисел. В этой же статье мы обсудим, что же такое экспонента в Excel и, самое главное, для чего она может пригодиться в обычной жизни или в бизнесе.

Вам нужно присвоить каждому числу в Excel свой номер, чтобы можно было их отсортировать по этому номеру? Можно придумать сложные конструкции для текстовых данных, но для числовых данных есть специальная функция РАНГ в Excel. Относится к числу статических функций и бывает довольно полезной. В статье мы так же рассказываем о новых функциях из Excel 2010 РАНГ.CP() […]

Продолжаем обзор математических функций и возможность. Сегодня на очереди формула из простейших — степень в Excel. Возведение в степень (корень) функцией или простым обозначениями, отрицательная степень. Как красиво записать степень, тоже будет здесь. Все в принципе просто, но это не значит, что об этом не нужно написать статейку. Тем более одной большой статьи, охватывающей все […]

Понял, что на нашем сайте очень мало описаний математических функций. Хотя в Excel их превеликое множество. Есть описание НДС, всяких там печатных документов и форм. А вот описания основы основ табличного редактора — математических функций, почти нет. «Надо бы заняться этим пробелом» — подумал я. Вот занимаюсь. Первым очереди факториал. Почему? Просто на днях, делал […]

Пожалуйста, приостановите работу AdBlock на этом сайте.

Математические вычисления не ограничиваются лишь арифметическими действиями. Кроме них, можно ещё встретить корни, модули, логарифмы, тригонометрические функции и пр. Научимся же использовать подобные функции в своих программах.

Для использования математических функций нужно подключить заголовочный файл math.h . В ней определено много различных функций, но мы пока рассмотрим следующие:

Некоторые математические функции

fabs(x) модуль числа x
sqrt(x) квадратный корень из числа x
sin(x) синус числа x (х в радианах)
cos(x) косинус числа x (х в радианах)
pow(x, y) вычисление x y
exp(x) вычисление e x
log(x) натуральный логарифм числа x
log10(x) десятичный логарифм числа x

Два важных момента.

  • Все функции возвращают значение типа double .
  • Параметры функций – вещественные числа(double ), но можно передавать и целые числа. При этом произойдёт неявное преобразование типа . Компилятор из целого числа, например 3, сделает вещественное 3.0.

Примеры.
Даны длины катетов прямоугольного треугольника. Вычислить длину гипотенузы. Простая задачка на знание теоремы Пифагора.

Листинг 1.

#include #include // подключаем math.h int main (void) { int a, b, c2; scanf("%d",&a); scanf("%d",&b); c2 = a*a + b*b; printf("c = %.2f\n", sqrt(c2)); return 0; }

Вычислить синус угла ввёденного с клавиатуры. Угол вводится в градусах.

Листинг 2.

#include #include // подключаем math.h int main (void) { double alpha, sin_a, pi = 3.1415926; scanf("%lf",&alpha); alpha = alpha*pi/180; sin_a = sin(alpha); printf("%.2f\n", sin_a); return 0; }

В этой программе есть о чём поговорить. Тригонометрические функции, которые определены в math.h работают с радианной мерой угла. Людям же привычнее работать с градусами. Поэтому в данной программе мы предварительно перевели значение из градусов в радианы . Если этого не сделать, результат получится неправильным. Проверьте это самостоятельно.

Неявное преобразование типов

При явном преобразовании типа мы в скобках перед значением указывали тип, к которому нужно привести данное значение. В неявном преобразовании этого делать не нужно. Компилятор автоматически подберёт необходимый тип.

Неявное преобразование типов осуществляется в следующих случаях:

  1. перед передачей аргументов в функцию (как в нашем примере с корнем. Листинг 1.)
  2. выполнение арифметических операций с разными типами аргументов
  3. перед выполнением присваивания

Правила неявного преобразования типов

  • если выполняются арифметические операции с разными типами аргументов. Оба аргумента приводятся к большему типу.
    Порядок типов: int < float < double
  • при присваивании. Значение справа от оператора присваивания приводится к типу переменной слева от оператора присваивания. При этом, если больший тип присваивается меньшему, то может произойти потеря точности.

int+float будет автоматически преобразовано к float+float
float/int будет автоматически преобразовано к float/float
double*float будет преобразовано к double*double
int = double double будет преобразовано к int с потерей дробной части
float = int int будет преобразовано к float

Функция - одно из важнейших понятий математики, исходное понятие ведущей ее области - математического анализа. В школьном курсе математики основное внимание уделяется числовым функциям. Причиной этого является тесная связь математики с естественными науками, в частности с физикой, для которой числовые функции служат средством количественного описания различных зависимостей между величинами.

В начальном курсе математики понятие функции и все, что с ним связано, в явном виде не изучается, но идея функциональной зависимости буквально пронизывает его, а правильное понимание таких свойств реальных явлений, как взаимозависимость и изменяемость, является основой научного мировоззрения. Безусловно, все это требует от учителя начальных классов определенных знаний о функции и ее свойствах, и прежде всего таких, которые помогут ему осуществлять в начальной школе пропедевтику понятия функции.

44. Понятие функции. Способы задания функций

Выполним два задания для младших школьников.

1) Увеличь каждое нечетное однозначное число в 2 раза.

2) Заполни таблицу.

Уменьшаемое
Вычитаемое
Разность

С какими математическими понятиями мы имеем дело, выполняя эти задания?

Прежде всего, в каждом задании есть два числовых множества, между элементами которых устанавливается соответствие. В первом - это множества {1, 3, 5, 7} и {2, 6, 10, 14}, а во втором - это множество значений вычитаемого (0,1,2, 3,4, 5} и множество значений разности {5, 4, 3, 2, 1, 0}. В чем сходство устанавливаемых между этими множествами соответствий? И в первом, и во втором задании каждому числу из первого множества сопоставляется единственное число из второго. В математике такие соответствия называют функциями. В общем виде понятие числовой функции определяют так:

Определение. Числовой функцией называется такое соответствие между числовым множеством X и множеством R действительных чисел, при котором каждому числу из множества X сопоставляется единственное число из множества R.

Множество X называют областью определения функции.

Функции принято обозначать буквами f, g, h и др. Если f - функция, заданная на множестве X, то действительное число у, соответствующее числу х из множества X, часто обозначают f(x) и пишут у= f(х). Переменную х при этом называют аргументом (или независимой переменной) функции f. Множество чисел вида f(х) для всех х из множества X называют областью значений функции f.

В рассмотренном выше первом примере функция задана на множестве X = {1, 3, 5, 7} - это ее область определения. А область значений этой функции есть множество {2,6,10,14}.

Из определения функции вытекает, что для задания функции необходимо указать, во-первых, числовое множество X, т.е. область определения функции, и, во-вторых, правило, по которому каждому числу из множества X соответствует единственное действительное число.

Часто функции задают с помощью формул, указывающих, как по данному значению аргумента найти соответствующее значение функции. Например, формулы у = 2х-3, у = х 2 , у = 3х, где х - действительное число, задают функции, поскольку каждому действительному значению х можно, производя указанные в формуле действия, поставить в соответствие единственное значение у.

Заметим, что с помощью одной и той же формулы можно задать как угодно много функций, которые будут отличаться друг от друга областью определения. Например, функция у = 2х-3, где х R, отлична от функции у = 2х-3, где х N. Действительно, при х = -5 значение первой функции равно -13, а значение второй при х = -5 не определено.

Часто при задании функции с помощью формулы ее область определения не указывается. В таких случаях считают, что областью определения функции f(x) является область определения выражения f(x). Например, если функция задана формулой у = 2х-3, то ее областью определения считают множество R действительных чисел. Если функция задана формулой у = , то её область определения - есть множество R действительных чисел, исключая число 2 (если х = 2, то знаменатель данной дроби обращается в нуль).

Числовые функции можно представлять наглядно на координатной плоскости. Пусть у = f(x) - функция с областью определения X. Тогда ее графиком является множество таких точек координатной плоскости, которые имеют абсциссу х и ординату f(x) для всех х из множества X.

Так, графиком функции у = 2х-3, заданной на множестве R, является прямая (рис. 1), а графиком функции у = х 2 , заданной также на множестве R, - парабола (рис. 2).

Рис.1 Рис.2

Функции можно задавать при помощи графика. Например, графики, приведенные на рисунке 3, задают функции, одна из которых имеет в качестве области определения промежуток [-2, 3], а вторая - конечное множество {-2, -1,0, 1, 2, 3}.

Не каждое множество точек на координатной плоскости представляет собой график некоторой функции. Так как при каждом значении аргумента из области определения функция должна иметь лишь одно значение, то любая прямая, параллельная оси ординат, или совсем не пересекает график функции, или пересекает его лишь в одной точке. Если же это условие не выполняется, то множество точек координатной плоскости график функции не задает. Например, кривая на рисунке 4 не является графиком функции - прямая АВ, параллельная оси ординат, пересекает ее в двух точках. Функции можно задавать при помощи таблицы.

Например, таблица, приведенная ниже, описывает зависимость температуры воздуха от времени суток. Эта зависимость - функция, так как каждому значению времени t соответствует единственное значение температуры воздуха р?;

Числовые функции обладают многими свойствами. Мы рассмотрим одно из них - свойство монотонности, так как понимание этого свойства учителем важно при обучении математике младших школьников.

Определение. Функция f называется монотонной на некотором промежутке А, если она на этом промежутке возрастает или убывает.

Определение. Функция f называется возрастающей на некотором промежутке А, если для любых чисел x 1, x 2 из множества А выполняется условие:

х 1 <х 2 f(x 1)

График функции, возрастающей на промежутке А, обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика увеличиваются (рис. 5).

Рис. 5 Рис.6

Определение. Функция f называется убывающей на некотором промежутке А, если для любых чисел х1, х 2 из множества А выполняется условие:

х 1 <х 2 f(x 1)>f(х 2).

График функции, убывающей на промежутке А, обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика уменьшаются (рис.6).

Язык программирования Си для персонального компьютера Бочков C. О.

Математические функции

Математические функции

Функция Краткое описание
abs нахождение абсолютного значения выражения типа int
acos вычисление арккосинуса
asin вычисление арксинуса
atan вычисление арктангенса х
atan2 вычисление арктангенса от у/х
cabs нахождение абсолютного значения комплексного числа
ceil нахождение наименьшего целого, большего или равного х
_clear87 получение значения и инициализация слова состояния сопроцессора и библиотеки арифметики с плавающей точкой
_control87 получение старого значения слова состояния для функций арифметики с плавающей точкой и установка нового состояния
cos вычисление косинуса
cosh вычисление гиперболического косинуса
exp вычисление экспоненты
fabs нахождение абсолютного значения типа double
floor нахождение наибольшего целого, меньшего или равного х
fmod нахождение остатка от деления х/у
_fpreset повторная инициализация пакета плавающей арифметики
frexp разложение х как произведения мантиссы на экспоненту 2 n
hypot вычисление гипотенузы
labs нахождение абсолютного значения типа long
ldexp вычисление х*2 exp
log вычисление натурального логарифма
log10 вычисление логарифма по основанию 10
matherr управление реакцией на ошибки при выполнении функций математической библиотеки
modf разложение х на дробную и целую часть
pow вычисление х в степени у
sin вычисление синуса
sinh вычисление гиперболического синуса
sqrt нахождение квадратного корня
_status87 получение значения слова состояния с плавающей точкой
tan вычисление тангенса
tanh вычисление гиперболического тангенса

Система программирования MSC предоставляет дополнительно функции:

Система программирования ТС предоставляет дополнительно функции:

Прототипы функций содержатся в файле math.h , за исключением прототипов функций _clear87 , _control87 , _fpreset , status87 , которые определены в файле float.h . Функция matherr (ее пользователь может задать сам в своей программе) вызывается любой библиотечной математической функцией при возникновении ошибки. Эта программа определена в библиотеке, но может быть переопределена пользователем, если она необходима, для установки различных процедур обработки ошибок.

Из книги Самоучитель UML автора Леоненков Александр

2.1. Предыстория. Математические основы Представление различных понятий окружающего нас мира при помощи графической символики уходит своими истоками в глубокую древность. В качестве примеров можно привести условные обозначения знаков Зодиака, магические символы

Из книги Давайте создадим компилятор! автора Креншоу Джек

Из книги Журнал «Компьютерра» № 9 от 06 марта 2007 года автора Журнал «Компьютерра»

Математические формулы для женщин Авторы: Скамейкин, Алексей, Яблоков, Сергей Две тысячи лет мужчины провели впустую. Вместо того чтобы написать формулу красоты и здоровья или хотя бы соорудить внятное определение красоты, они ходили вокруг да около, не в силах

Из книги Excel. Мультимедийный курс автора Мединов Олег

Математические функции Создайте чистую таблицу. Эту таблицу мы будем использовать для примеров использования функций.Наиболее часто используемая функция в математических расчетах – это КОРЕНЬ.1. Выделите ячейку R2C2. В эту ячейку мы будем вставлять функцию.2. Нажмите

Из книги Windows Script Host для Windows 2000/XP автора Попов Андрей Владимирович

Математические функции Имеющиеся в VBScript функции, предназначенные для математических вычислений, описаны в табл. П2.14.Таблица П2.14. Математические функции Функция Описание Abs(x) Возвращает абсолютное значение числа х Atn(x) Возвращает арктангенс числа х Cos(x) Возвращает

Из книги MySQL: руководство профессионала автора Паутов Алексей В

4.5.3. Функции, которые создают новые конфигурации из существующих 4.5.3.1. Функции геометрии, которые производят новые конфигурации Раздел "4.5.2. Функции Geometry" обсуждает несколько функций, которые создают новые конфигурации из

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл

8.1.9. Массивы как математические множества В большинстве языков множества напрямую не реализованы (Pascal составляет исключение). Но массивы в Ruby обладают некоторыми свойствами, которые позволяют использовать их как множества. В данном разделе мы рассмотрим эти свойства и

Из книги Справочник по PHP автора

Математические функции Функции округления absВозвращает модуль числа.Синтаксис:mixed abs(mixed $number)Тип параметра $number может быть float или int, а ти п возвращаемого значения всегда совпадает с типом этого параметра.$x = abs(-4); // $x=4$x = abs(-7.45); // $x=7.45roundОкругление дробного числа до

Из книги Курс "Язык программирования PHP" автора Савельева Нина Владимировна

Из книги Язык программирования Си для персонального компьютера автора Бочков C. О.

Математические функции Функция Краткое описание abs нахождение абсолютного значения выражения типа int acos вычисление арккосинуса asin вычисление арксинуса atan вычисление арктангенса х atan2 вычисление арктангенса от у/х cabs нахождение абсолютного значения

Из книги Как спроектировать современный сайт автора Вин Чои

Математические формулы Кирпичи просто создавать, использовать, они понятны и просты, но на протяжении столетий возникло и сформировалось более тонкое понимание систем упорядочения. Эти открытия и нововведения развивали наше понимание сеток. Обращаясь к математике,

Из книги Видеосамоучитель создания реферата, курсовой, диплома на компьютере автора Баловсяк Надежда Васильевна

4.1. Математические формулы В текстовом редакторе Word существует специальный инструмент для работы с формулами – редактор формул. С его помощью можно создавать сложные объекты, выбирая символы с панели инструментов и задавая переменные и числа. При этом размер шрифтов,

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Из книги C++ для начинающих автора Липпман Стенли

Из книги Конец холивара. Pascal vs C автора Кривцов М. А.

Стандартные математические функции ABS (X) – абсолютная величина X.ARCTAN (X) – вычисление угла в радианах, тангенс которого равен X.COS (X) – вычисление косинуса угла в радианах.EXP (X) – Вычисление ex.LN (X) – вычисление натурального логарифма от X.PI – вычисление числа Пи.RANDOM –

Из книги автора

Стандартные математические функции Для того, чтобы использовать эти функции в начале программы должно стоять:#include abs (x) – возвращает абсолютное значение целого аргумента x.acos (x) – арккосинус x.asin (x) – арксинус x.atan (x) – арктангенс x.cos (x) – косинус x.exp (x) – ex.fabs



error: Контент защищен !!